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Introduction

Introduction

Programming parallel machines is complex
I Extract parallelism; while
I Minimizing datamovements

Executionmodels:
I Fork-Join (Bulk-Synchronous): promotes data locality and

tolerates idle times
I Data-Driven (Asynchronous): keeps processors busy to the

detriment of data locality

)Trade-off: data locality vs.minimizing idle times

Proposition
Study this trade-off onMulti-Cores + the FastMultipoleMethod (FMM)
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Introduction The Fork-JoinModel

The Fork-JoinModel

I Execution =multiple steps
synchronized by global barriers

I Each step is executed in parallel
I A stepmaywork on a subset of

data! Possibility to exploit data
locality

I Wedo not consider nested
fork-join

Input Data

Output Data

Sync.
Barrier

Tasks 
executed 
by a team
of threads
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Introduction TheData-DrivenModel

The Data-DrivenModel

I Breaks global synchronizations
into fine-grain local
synchronizations

I Runtimes and schedulers extract
parallelism andminimize idle
times

I Difficult to express locality and
possible loss in cache
performance

Input Data

Output Data
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Introduction Trade-Off: Data locality vs. idle times

Data locality vs. Idle times trade-off

Parallel executionmodels exhibit a trade-off between data-locality and
computational units idle times:

Idle times

Data-movements

Bulk-synchronous (Fork-join) Fine-grain data-driven

)We study the extreme cases: Bulk-Synchronous vs. Fine-grain
data-drivenmethods
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Introduction The FastMultipoleMethod (FMM)

The FastMultipoleMethod

I Solves n-body problemswithO(N) complexity
I Used inmany scientific simulations:

Elctrodynamics 1 Fluid dynamics 2 Blood flow 3

1S. Chaillat, M. Bonnet, J.F. Semblat: Amulti-level fast multipole bem for 3-d elastodynamics in the frequency
domain. ComputerMethods in AppliedMechanics and Engineering 197 (2008)

2R. Yokota, T. Narumi, L.A. Barba, K. Yasuoka: Petascale turbulence simulation using a highly parallel fast multipole
method. (2011)

3A. Rahimian, I. Lashuk, S. Veerapaneni, A. Chandramowlishwaran, D.Malhotra, L. Moon, R. Sampath, A.
Shringarpure, J. Vetter, R. Vuduc, D. Zorin, and G. Biros, Petascale Direct Numerical Simulation of Blood Flow on 200K
Cores andHeterogeneous Architectures, SC 2010
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Introduction The FastMultipoleMethod (FMM)

Basics of FMMs: Domain decomposition

2D domain decomposition example
Corresponding quad-tree
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Introduction The FastMultipoleMethod (FMM)

Basics of FMMs: Interaction lists

Interaction lists for a
target box B in a quad-tree1

U

V V V V

U U V V

V U B U

X

V U

U
U U U W

W
W W W W

W W W W

V V V V

X

V V V V

1A. Chandramowlishwaran, S.Williams, L. Oliker, I. Lashuk, G. Biros, R. Vuduc: Optimizing and tuning the fast
multipole method for state-of-the-art multicore architectures". IPDPS (2010)
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Interaction lists for a
target box B in a quad-tree1
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V V V V

U U V V

V U B U

X

V U

U
U U U W

W
W W W W

W W W W
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1. Near field direct evaluation

I U-list: Compute intensive

2. Far field approximation

I Upward: Parent-children
dependencies

I V-list: Memory intensive
I X andW-lists: High workload
variation

I Downward: Parent-children
dependencies

1A. Chandramowlishwaran, S.Williams, L. Oliker, I. Lashuk, G. Biros, R. Vuduc: Optimizing and tuning the fast
multipole method for state-of-the-art multicore architectures". IPDPS (2010)
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FMM Implementations Fork-Join FMM

Fork-Join implementation of the FMM1

I Each step implementedwith
OpenMPwork-sharing constructs

I Upward andDownward:
level-by-level synchronization
barriers

I U-list and V-list: manual
partitioning for improved
load-balancing

I X andW-list: OpenMP
scheduler

Up Up Up Up

Down Down Down Down

Down Down

Up Up

V VV V VV

Sources

Targets

1A. Chandramowlishwaran, S.Williams, L. Oliker, I. Lashuk, G. Biros, R. Vuduc: Optimizing and tuning the fast
multipole method for state-of-the-art multicore architectures. IPDPS (2010)
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FMM Implementations Data-Driven FMM

Data-Driven implementation of the FMM

Data-Driven FMMs related work:
I Based on task schedulers: Quark1,

StarPU2, and others
I Overhead: taskmanagement + data

dependency tracking

Proposition
I Lightweight threads: low overhead

taskmanagement
I Manual synchronization: atomic

counters + task nesting

Up Up Up Up

Down Down Down Down

Down Down

Up Up

V V

V V VV

Sources

Targets

1Ltaief, H., Yokota, R.: Data-driven execution of fast multipole methods. (2012)
2Agullo, E., Bramas, B., Coulaud, O., Darve, E., Messner, M., Takahashi, T.:Pipelining the fast multipole method over

a runtime system. (2012)
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FMM Implementations Data-Driven FMM

MassiveThreads library1

I Cilk2-like runtime:Work-first
scheduling with inter-worker
work-stealing

I Low overhead task
management

I Private queues per worker
which enablesDistributed
Scheduling

    Core 0     Core 1Cores

Workers

Queues

5 6 7 8

1 2

0

3 4 9 10

Tasks 
(Lightweigth
Threads)

Task creation graph 
(not dependencies)

Low overhead 
task creation

Private queues 

1http://code.google.com/p/massivethreads/
2http://supertech.csail.mit.edu/cilk/
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FMM Implementations Data-Driven FMM

Data-Driven FMM: implementation details

Fine-grain tasks where each task:
I Operates at the tree node level
I Is embedded in a lightweight thread
I May recursively create other tasks

which enables subtreeworking-sets

A Task has two parts:
I Computation
I Synchronization in two steps

I Update sync. counters
I Dependent task creation

Up Up Up Up

Down Down Down Down

Down Down

Up Up

V V

V V VV

Sources

Targets
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FMM Implementations Data-Driven FMM

Data-Driven FMM: implementation details

void⇤ V ( src ) {
for ( t rg in V l i s t ( s rc ) )
{

compute_V ( trg , s rc ) ;

t rg . down_counter ++;

i f ( t rg . down_counter = nb_dep ( t rg ) )
c rea te _ task (Down, t rg ) ;

}
}

I Computation
I Synchronization in two steps

I Update sync. counters
I Dependent task creation

Up Up Up Up

Down Down Down Down

Down Down

Up Up

V V

V V VV

Sources

Targets
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Performance Evaluation and Analysis Test-bed Configuration

TargetMulti-Core Architectures

Sandy-Bridge-EP Nehalem-EX Magny-Cours

Processor Xeon E5-2620 Xeon X7550 Opteron 6172
CPU Frequency (Ghz) 2.0 2.0 2.1
#NUMA-nodes⇥#Cores 2⇥6 4⇥8 8⇥6
L3 Cache size (MB) 15 18 6
TotalMemory BW (MB/s) 52590.4 68827.3 74720.4

NUMAnodes topology for eachmachine

Sandy-Bridge-EP Nehalem-EX Magny-Cours
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Performance Evaluation and Analysis Test-bed Configuration

Simulation Input1

Particle Distribution

U
ni
fo
rm

E
lli
pt
ic
al

CorrespondingOct-tree

1The particle distribution and oct-tree figures were obtainedwith a small problem size for simplicity reasons. For
the other experiments, 4 millions particles were usedwith 250 particles per boxe.
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Performance Evaluation and Analysis The Fork-Join FMMbottlenecks at scale

The Fork-Join FMMbottlenecks at scale
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(a) Uniform distribution

1 2 4 8 16 24 32 48

#Cores
0%

20%

40%

60%

80%

100%

Pe
rc

en
tag

e o
f e

xe
cu

tio
n 

tim
e

Downward
X-list
W-list
V-list
U-list
Upward

(b) Elliptical distribution

I Single thread execution: U-list and V-list are bottlenecks
I Larger scale: in addition to V-list Upward andDownward (often

neglected) consumemore time than U-list
I Need an optimized implementation for each stage
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Performance Evaluation and Analysis Comparative Analysis

Comparative strong scaling

Sandy-Bridge-EP Nehalem-EX Magny-Cours
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The data-drivenmethod, as compared to the original design:
I Gives similar performance for a uniform distr.
I Scales better for the irregular distr. (except in the case of

Magny-Cours at high core count, likely due to the small cache size)
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Performance Evaluation and Analysis Comparative Analysis

Under the hood: Execution trace

Data-driven method re-
sults:

I Global
synchronization
eliminated

I Upward kernels
faster (better data
reuse)

I V-list kernels slower
(likely cache
contention)

Execution traceon theMagny-coursmachine

) The data-driven execution does not address thememory intensive
kernel bottleneck, but makes it worse!
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Performance Evaluation and Analysis Comparative Analysis

WhyUpward has a better data locality?

UniformOct-trees, color = thread

OpenMPwith a guided scheduler

)Potential lose of inter-level
data locality

Data-Driven

)High inter-level
data locality
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Performance Evaluation and Analysis Comparative Analysis

WhyUpward has a better data locality?
Irregular Oct-tree, color = thread

Guided scheduler with 8 threads

Sub-tree partitioning with 8 threads

Tracewith an Elliptical distr.

)Better to keep data local and havemore idle times than being
dynamic and increase datamovements!
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Performance Evaluation and Analysis Memory-intensive Kernel Analysis

V-list source-target interactions

I Reads from a source vector
andwrites into a target vector

I Source-target vector elements
relationship: sparsematrix

I Sparse data access pattern in
non-NUMA aware fashion

V-list interactions in an Elliptical distr.
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Performance Evaluation and Analysis Memory-intensive Kernel Analysis

RooflineModel Analysis

I Arithmetic intensity and
GFlops: performance counters

I Bandwidth roof and ceilings:
Stream benchmark1

I V-list performance limited by
the bandwidth ceilings

I Currently themain bottleneck
for both parallel execution
methods

Roofline plot for the Sandy-Bridge-EP
Machine
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1McCalpin, J.D.: Memory bandwidth andmachine balance in current high performance computers. IEEE Computer
Society Technical Committee on Computer Architecture TCCANewsletter (1995)
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Conclusion and FutureWork

Conclusion and FutureWork

I Low overhead fine-grain Data-Driven execution of FMMusing
distributed task scheduling

I Data-Driven showed a better trade-off between data locality and
synchronization overheads

I This methodmadeworse thememory intensive kernel execution

Future work:
I More tuning can be performed

I Tuning the task granularity
I Hiding V-list memory latency by the other computations
I Blocking source data in V-list

I Enlarge the study to other irregular algorithms andmany-core
architectures

I Building runtimes which take into account the costs of
data-movements and idle times
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